76[K].-R. Doornbos \& H. J. Prins, "On slippage tests. I," Indagationes Mathematicae, v. 20, 1958, p. 38-46 (Proc. Kon. Ned. Ak. van Wetensch., v. 61, Sec. A, 1958, p. 38-46); "On slippage tests. II," Ibid., p. 47-55; "On slippage tests. III," Ibid., p. 438-447.
The tables, which appear in part III, are related to two of the special cases included in this series of papers. In the first, from each of k Poisson distributions, with means μ_{i}, a random drawing Z_{i} is taken ($i=1,2, \cdots k$). To test the null hypothesis that $u_{i}=u, i=1, \cdots, k$, for which the table is prepared, against the alternate that one of the u_{i} 's is greater than the others which have equal values, the authors propose the statistic, $\max Z_{i}$. For $k=2(1) 10$ and the sum of the k observations, $n=2(1) 25$, values of $\max Z_{i}$ are given for which the significance levels are near 5% and 1%. In each case the actual significance levels are given to 3 D .

In the second case, each of k objects is ranked by each of m observers. The null hypothesis under test is that each of the m rankings is independently and randomly chosen from the set of permutations of the integers $1,2, \cdots, k$. As a test against the alternate that one of the objects has a higher probability of being ranked low while the others are ranked in random order, the proposed statistic is min S_{i} where S_{i} is the sum of ranks assigned the i-th object ($i=1,2, \cdots, k$). Critical values S_{α} of $\min S_{i}$ for significance levels near $\alpha=.05, .025, .01$ are tabled for $m=3(1) 9$ and $k=2(1) 10$. Again in each case true significance levels are shown to 3D.
C. C. Craig

University of Michigan
Ann Arbor, Michigan
$77[\mathrm{~K}]$.-F. G. Foster, "Upper percentage points of the generalized beta distribution. III," Biometrika, v. 45, 1958, p. 492-503.
Let $\theta_{\text {max }}$ denote the greatest root of $\left|\nu_{2} B-\left(\nu_{1} A+\nu_{2} B\right)\right|=0$ where A and B are independent estimates, based on ν_{1} and ν_{2} degrees of freedom, of a parent dispersion matrix of a four-dimensional multinormal distribution. Define

$$
I_{x}(4 ; p, q)=\operatorname{Pr}\left(\theta_{\max } \leqq k\right)
$$

with $p=\frac{1}{2}\left(\nu_{2}-3\right), q=\frac{1}{2}\left(\nu_{1}-3\right)$. Employing methods similar to those used in two preceding papers [1], [2] for the two and three-dimensional cases, the author tabulates $80 \%, 85 \%, 90 \%, 95 \%$, and 99% points of $I_{x}(4 ; p, q)$ to 4 D for $\nu_{1}=5(2) 195$ and $\nu_{2}=4(1) 11$.
C. C. Craig

University of Michigan
Ann Arbor, Michigan

1. F. G. Foster \& D. H. Rees, "Upper percentage points of the generalized beta distribution. I," Biometrika, v. 44, 1957, p. 237-247. [MTAC, Rev. 165, v. 12, 1958, p. 302]
2. F. G. Foster, "Upper percentage points of the generalized beta distribution. II," Biometrika, v. 44, 1957, p. 441-453. [MTAC, Rev. 167, v. 12, 1958, p. 302.]

78[K].-W. Hetz \& H. Klinger, "Untersuchungen zur Frage der Verteilung von Objekten auf Plätze," Metrika, v. 1, 1958, p. 3-20.
For the classical distribution problem in which k indistinguishable objects are randomly distributed into n distinguishable cells (as in Maxwell-Boltzmann
statistics) the authors take the number, s, of occupied cells as a statistic to test the hypothesis of uniform probability over the cells. Let $P(s \mid n, k)$ be the probability density for s. The correspondence is noted between this distribution and the results of a series of n drawings from a discrete distribution in which the random variable assumes only the values $0,1,2, \cdots$, and in which the sample sum is k and the number of non-zero values is s. In developing a recursion formula for $P(s \mid n, k)$ it is shown that the uniform distribution over cells arises from the Poisson distribution, and the binomial and negative binomial distribution give particular non-uniformities. The function tabulated is $Z_{k ; \alpha}$, which is defined under the hypothesis of uniformity by $\sum_{s=1}^{Z_{k=1}} P(s \mid n, k) \leqq \alpha$ and $\sum_{s=1}^{Z_{k, \alpha}+1} P(s \mid n, k)$ $>\alpha$, for $\alpha=.05, .01, .001 ; n=3(1) 20$, and ranges of k varying from (3, 15) for $n=3$ to $(2,100)$ for $n=20$.
C. C. Craig

University of Michigan
Ann Arbor, Michigan
$79[\mathrm{~K}]$.-A. Huitson, "Further critical values for the sum of two variances," Biometrika, v. 45, 1958, p. 279-282.
Let $s_{i}{ }^{2}, i=1,2$, be an estimate of the variance $\sigma_{i}{ }^{2}$ with f_{i} degrees of freedom so that $f_{i} s_{i}{ }^{2} / \sigma_{i}{ }^{2}$ is distributed as χ^{2} with f_{i} dif. To assign confidence limits to the form $\lambda_{1} \sigma_{1}{ }^{2}+\lambda_{2} \sigma_{2}{ }^{2}$, where λ_{1} and λ_{2} are arbitrary positive constants, the author has previously [1] tabulated upper and lower 5% and 1% critical values of

$$
\left(\lambda_{1} s_{1}^{2}+\lambda_{2} s_{2}^{2}\right) /\left(\lambda_{1} \sigma_{1}^{2}+\lambda_{2} \sigma_{2}^{2}\right)
$$

The present tables are an extension, giving upper and lower $2 \frac{1}{2} \%$ and $\frac{1}{2} \%$ critical values for the same function to 2 D for $\lambda_{1} s_{1}{ }^{2} /\left(\lambda_{1} s_{1}{ }^{2}+\lambda_{2} s_{2}{ }^{2}\right)=0(.1) 1$ and $f_{1}, f_{2}=16,36,144, \infty$.
C. C. Craig

University of Michigan
Ann Arbor, Michigan

1. A. Huitson, "A method of assigning confidence limits to linear combinations of variances," Biometrika, v. 42, 1955, p. 471-479. [MTAC, Rev. 19, v. 12, 1958, p. 71.]

80[K].-Solomon Kullback, Information Theory and Statistics, John Wiley \& Sons, New York, 1959, xvii +395 p., 24 cm . Price $\$ 12.50$.
This interesting book, which discusses logarithmic measures of information and their applications to the testing of statistical hypotheses, contains three extended tables in addition to a number of shorter or more specialized ones. Table I gives $\log _{e} n$ and $n \log _{e} n$ to 10D for $n=1(1) 1000$. Table II lists values of

$$
p_{1} \log _{e} \frac{p_{1}}{p_{2}}+\left(1-p_{1}\right) \log _{e} \frac{1-p_{1}}{1-p_{2}} \quad \text { to } 7 \mathrm{D} \text { for } p_{1}, p_{2}=.01(.01) .05(.05) .95
$$

(.01).99. Table III gives 5% points for noncentral χ^{2} to 4 D with $2 n$ degrees of freedom for $n=1(1) 7$ and noncentrality parameter β^{2} for $\beta=0(.2) 5$. As it is stated, this is taken directly from an equivalent table of R. A. Fisher [1].
C. C. Craig

